
Software Requirements Specification

TutorFIT
A Mobile Application Connecting Students and Tutors at the

Florida Institute of Technology

Project Team:
- Eleanor Barry (ebarry2022@my.fit.edu)
- Sidney Nedd (snedd2020@my.fit.edu)

- Samaher Damanhori (sdamanhori2020@my.fit.edu)

Faculty Advisor:
Dr. Khaled Salhoub (kslhoub@fit.edu)

Client:
- Dr. Khaled Salhoub

- Students of the Florida Institute of Technology

10/02/2023

Contents

1. Introduction..3
1.1 Purpose... 3
1.2 Scope.. 3
1.3 Definitions, Acronyms, and Abbreviations...3

2. Overall Description...4
2.1 Product Perspective.. 4
2.2 Product Features...4
2.3 User Classes and Characteristics... 4

2.3.1. Students: Users seeking tutoring services...4
2.3.2 Tutors: Users offering tutoring services.. 4

2.4 Operating Environment... 4
2.5 Design and Implementation Constraints... 4
2.6 Assumptions and Dependencies...4

3. System Features..5
3.1 User Registration... 5
3.2 Scheduling... 6
3.3 Communication..7
3.4 Push Notifications/Alerts..8
3.5 Student Reviews and Ratings..8
3.6 Event Tracking... 9
3.7 User Engagement and Retention.. 9

4. External Interface Requirements...10
4.1 User Interfaces.. 10
4.2 Hardware Interfaces.. 10
4.3 Software Interfaces... 10

5. Software Attributes...11
5.1 Performance.. 11
5.2 Security..11
5.3 Reliability... 11
5.4 Usability...12
5.5 Maintainability..12
5.6 Scalability.. 12
5.7 Privacy and Data Protection..12

6. Use Case Diagram... 13

2

1. Introduction

1.1 Purpose
The purpose of this document is to define the requirements for the development of the
"TutorFIT" mobile application. It outlines the features, functionality, and constraints that
will guide the development process.

1.2 Scope
The scope of this project includes the creation of a mobile application that connects
students and tutors at the Florida Institute of Technology (FIT). The application aims to
streamline the process of connecting students with tutors, offering scheduling,
communication, notifications, and user engagement features.

1.3 Definitions, Acronyms, and Abbreviations

Terms Used Definitions

FIT Florida Institute of Technology

SDK Software Development Kit

API Application Programming Interface

Xamarin A cross-platform app development framework

Flutter A cross-platform app development framework

3

2. Overall Description

2.1 Product Perspective
The "TutorFIT" application will serve as an independent mobile application that interacts
with FIT's course and user databases through web scraping. It does not have direct
integration with FIT's internal systems.

2.2 Product Features
The application will provide the following key features:

● User Registration
● Scheduling
● Communication
● Push Notifications/Alerts
● Student Ratings and Reviews
● Event Tracking
● User Engagement and Retention

2.3 User Classes and Characteristics
There are two primary user classes:

2.3.1. Students: Users seeking tutoring services.

2.3.2 Tutors: Users offering tutoring services.

2.4 Operating Environment
The application will be developed for both Android and iOS platforms, ensuring
compatibility with a wide range of devices.

2.5 Design and Implementation Constraints
● The application will be developed using cross-platform frameworks (e.g.,

Xamarin, Flutter).
● Access to FIT's API is limited; web scraping will be used to obtain course data.
● Backend server-side components will be developed using JavaScript (Node.js).
● Third-party tools and libraries will be integrated as needed.

2.6 Assumptions and Dependencies
● Users are responsible for providing accurate and up-to-date information during

registration.

4

● The application's functionality relies on the availability and structure of FIT's web
pages for data retrieval.

3. System Features

3.1 User Registration

1. User Sign-up: Users can register by providing their name, email address, and
password.

● Sample Input (Correct): User enters a valid email and password.
● Sample Output (Correct): User is successfully registered and redirected to

the home screen.
● Sample Input (Incorrect): User enters an invalid email or password.
● Sample Output (Incorrect): User receives an error message and is

prompted to correct the input.

2. User Profiles: Users can create and edit their profiles, including personal
information such as name, contact details, and a profile picture.

● Sample Input (Correct): User fills in all required profile information.
● Sample Output (Correct): User profile is successfully created or updated.
● Sample Input (Incorrect): User misses required fields.
● Sample Output (Incorrect): User is prompted to complete all required

fields.

3. Course Registration: Users can select and register for specific courses from a
predefined list.

● Sample Input (Correct): User selects courses from the provided list.
● Sample Output (Correct): User's selected courses are added to their

profile.
● Sample Input (Incorrect): User selects courses not available in the list.
● Sample Output (Incorrect): User receives an error and is asked to select

from the provided courses.

4. Live Search: The system will implement a live search feature during registration,
allowing users to quickly find and select their courses, professors, and
departments.

● Sample Input (Correct): User starts typing, and relevant suggestions
appear.

● Sample Output (Correct): Users can easily select relevant courses and
professors.

● Sample Input (Incorrect): No suggestions appear as the user types.
● Sample Output (Incorrect): User faces difficulty in selecting courses and

professors.

5

5. Language Preference: Users can set their preferred teaching or learning
language during registration.

● Sample Input (Correct): User selects their preferred teaching or learning
language.

● Sample Output (Correct): Language preference is saved in the user's
profile.

● Sample Input (Incorrect): User encounters issues while setting language
preference.

● Sample Output (Incorrect): User's language preference is not saved, and
they may need to retry.

3.2 Scheduling

1. Class Enrollment: Students can view the list of classes they are enrolled in.
● Sample Input (Correct): Student views their enrolled classes.
● Sample Output (Correct): Student sees a list of their enrolled classes.
● Sample Input (Incorrect): Student's enrolled classes are not displayed.
● Sample Output (Incorrect): Students are unable to see their classes.

2. Tutor Selection: Students can access information about available tutors for their
classes.

● Sample Input (Correct): Student selects a course and views available
tutors.

● Sample Output (Correct): Student sees a list of available tutors for the
selected course.

● Sample Input (Incorrect): No tutors are displayed for the selected course.
● Sample Output (Incorrect): Student is informed that no tutors are

available.

3. Tutor Scheduling: Students can schedule tutoring sessions with available tutors.
● Sample Input (Correct): Student schedules a tutoring session with an

available tutor.
● Sample Output (Correct): Student receives a confirmation, and the

session is added to their schedule.
● Sample Input (Incorrect): Student encounters an error while scheduling.
● Sample Output (Incorrect): Student receives an error message and is

unable to schedule.

4. Tutor Management: Tutors can view the list of classes they have chosen to tutor
for during registration.

● Sample Input (Correct): Tutor views the list of classes they can tutor for.
● Sample Output (Correct): Tutor sees the classes they can tutor for and

can manage their availability.
● Sample Input (Incorrect): Tutor cannot view their classes.
● Sample Output (Incorrect): Tutor is unable to manage their availability.

6

5. Tutor Requests: Tutors can manage incoming tutoring requests from students,
accepting or declining them as needed.

● Sample Input (Correct): Tutor receives a tutoring request and accepts it.
● Sample Output (Correct): Tutor confirms the appointment, and it's added

to their schedule.
● Sample Input (Incorrect): Tutor declines a tutoring request.
● Sample Output (Incorrect): Student is notified of the decline, and the

appointment is not scheduled.

6. Search Filters: Users can search for tutors using filters such as course name,
course code, preferred learning language, and department.

● Sample Input (Correct): User applies filters to search for tutors.
● Sample Output (Correct): User receives a filtered list of tutors matching

their criteria.
● Sample Input (Incorrect): Filters do not work as expected.
● Sample Output (Incorrect): User does not receive a filtered list of tutors.

3.3 Communication

1. In-App Messaging: Users can communicate with each other via an in-app
messaging system.

● Sample Input (Correct): Users send and receive messages in real-time.
● Sample Output (Correct): Messages are delivered instantly between

users.
● Sample Input (Incorrect): Messages are delayed or not delivered.
● Sample Output (Incorrect): Users experience communication issues.

2. Real-time Chat: Messaging should be real-time, leveraging real-time messaging
SDKs to ensure immediate communication.

● Sample Input (Correct): Users engage in a real-time chat session.
● Sample Output (Correct): Chat messages appear in real-time.
● Sample Input (Incorrect): Messages lag or don't appear instantly.
● Sample Output (Incorrect): Users experience delays in messaging.

3. Email Integration: Users have the option to communicate through email if they
prefer email-based communication.

● Sample Input (Correct): Users choose to communicate via email.
● Sample Output (Correct): Email communication is initiated without issues.
● Sample Input (Incorrect): Users encounter problems when trying to

communicate via email.
● Sample Output (Incorrect): Email communication fails or does not initiate.

7

3.4 Push Notifications/Alerts

1. Appointment Alerts: Users will receive push notifications and alerts for
appointment updates, including accepted and declined appointments.

● Sample Input (Correct): Users receive push notifications for appointment
updates.

● Sample Output (Correct): Users are notified of accepted and declined
appointments.

● Sample Input (Incorrect): Push notifications for appointments are not
received.

● Sample Output (Incorrect): Users do not receive appointment updates.

2. Reminder Alerts: Users will receive reminders for scheduled tutoring sessions.
● Sample Input (Correct): Users receive reminders for scheduled tutoring

sessions.
● Sample Output (Correct): Users are reminded of upcoming sessions.
● Sample Input (Incorrect): Users do not receive session reminders.
● Sample Output (Incorrect): Users miss scheduled sessions due to lack of

reminders.

3. Message Alerts: Users will be notified of new messages from their tutors.
● Sample Input (Correct): Users are alerted of new messages from their

tutors.
● Sample Output (Correct): Users receive timely alerts for new messages.
● Sample Input (Incorrect): Message alerts are not received.
● Sample Output (Incorrect): Users are not notified of new messages.

3.5 Student Reviews and Ratings

1. Review Submission: Students can submit reviews and ratings after each
tutoring session.

● Sample Input (Correct): Students can submit reviews and ratings after
each tutoring session.

● Sample Output (Correct): Reviews and ratings are successfully submitted.
● Sample Input (Incorrect): Students encounter issues while submitting

reviews.
● Sample Output (Incorrect): Reviews and ratings are not submitted, and

students may need to retry.

2. Review Visibility: Reviews and ratings are visible to other students considering
the same tutor.

● Sample Input (Correct): Reviews and ratings are visible to other students.
● Sample Output (Correct): Students can see reviews and ratings when

considering a tutor.

8

● Sample Input (Incorrect): Reviews and ratings are not visible to other
students.

● Sample Output (Incorrect): Students do not see reviews and ratings.

3. Tutor Responses: Tutors can view and respond to student feedback.
● Sample Input (Correct): Tutors can view and respond to student feedback.
● Sample Output (Correct): Tutors can engage with student reviews.
● Sample Input (Incorrect): Tutors encounter issues while responding to

feedback.
● Sample Output (Incorrect): Tutors are unable to respond to student

feedback.

3.6 Event Tracking

1. User Engagement Metrics: The application will integrate a third-party SDK to
monitor user engagement, tracking activities such as sign-ups, appointments
booked, cancellations, and other relevant interactions.

● Sample Input (Correct): The system accurately tracks user engagement
activities.

● Sample Output (Correct): Stakeholders receive data on sign-ups,
appointments, and user interactions.

● Sample Input (Incorrect): Engagement metrics are not tracked correctly.
● Sample Output (Incorrect): Stakeholders do not receive accurate data on

user interactions.

2. Data Collection: The system will collect data on user behavior within the app.
● Sample Input (Correct): The system collects data on user behavior.
● Sample Output (Correct): Data on user interactions is stored for analysis.
● Sample Input (Incorrect): Data collection fails.
● Sample Output (Incorrect): No data on user interactions is stored.

3.7 User Engagement and Retention

1. Loyalty Program: Loyal and frequent users will have the advantage of
accessing free tutoring sessions.

● Sample Input (Correct): Loyal users are rewarded with free tutoring
sessions.

● Sample Output (Correct): Loyal users receive free sessions as part of the
loyalty program.

● Sample Input (Incorrect): Loyalty program does not provide free sessions
as expected.

● Sample Output (Incorrect): Loyal users do not receive free sessions.

9

2. Ad Revenue Redistribution: Dedicated tutors will benefit from ad revenue
redistribution, allowing them to earn extra income.

● Sample Input (Correct): Tutors benefit from ad revenue redistribution.
● Sample Output (Correct): Tutors receive additional income from ad

revenue.
● Sample Input (Incorrect): Ad revenue redistribution does not work as

expected.
● Sample Output (Incorrect): Tutors do not receive additional income.

3. Reward System: The app will encourage users to stay engaged and active
through a reward system.

● Sample Input (Correct): Users are incentivized to stay engaged through
rewards.

● Sample Output (Correct): Users receive rewards for engagement.
● Sample Input (Incorrect): The reward system does not motivate user

engagement.
● Sample Output (Incorrect): Users do not receive rewards as expected.

4. External Interface Requirements

4.1 User Interfaces
The application will provide user-friendly interfaces for both students and tutors.

4.2 Hardware Interfaces
The application will require standard smartphone hardware components like cameras,
microphones, and push notification capabilities.

4.3 Software Interfaces
The application will interact with third-party libraries, SDKs, and FIT's web pages for
data retrieval.

10

5. Software Attributes

5.1 Performance

Functional Requirements:
1. Responsiveness: The application must respond promptly to user

interactions, ensuring a seamless user experience.
2. Scalability: The system should be able to handle an increasing number of

users and data over time without significant performance degradation.

Non-Functional Requirements:
● Response Time: The application should maintain low response times,

even with a growing user base.
● Reliability: Users should experience minimal downtime, ensuring access

to scheduling and communication features at all times.

5.2 Security

Functional Requirements:
1. User Data Protection: User data, including personal information and

communication, must be securely stored and transmitted.
2. Authentication: Secure authentication mechanisms must be

implemented to ensure user privacy and data integrity.

Non-Functional Requirements:
● Data Encryption: User data transmission should be encrypted to prevent

unauthorized access.
● Data Integrity: The system should protect against data breaches and

ensure the confidentiality of user information.

5.3 Reliability

Functional Requirements:
1. System Availability: The application must be available for scheduling,

communication, and other features.
2. Message Delivery: Messages must be reliably delivered to ensure

effective communication between users.

Non-Functional Requirements:
● Uptime: The application should have high uptime, with minimal

disruptions to user access.
● Message Reliability: Messages should be delivered without loss or delay.

11

5.4 Usability

Functional Requirements:
1. Intuitive Design: The user interface must be intuitive, guiding users

through registration, scheduling, and communication.
2. Clear Notifications: Push notifications and alerts should be clear and

informative.

Non-Functional Requirements:
● User Satisfaction: Users should find the application easy to use and

understand, promoting high user satisfaction.

5.5 Maintainability

Functional Requirements:
1. Code Documentation: The application codebase must be

well-documented for future maintenance.
2. Scalable Architecture: The application architecture should support future

enhancements and changes.

Non-Functional Requirements:
● Code Quality: Code quality and organization should facilitate

maintenance and updates.

5.6 Scalability

Functional Requirements:
1. User Growth: The application must handle an increasing number of users

without significant performance issues.
2. Data Handling: The system should manage a growing dataset efficiently.

Non-Functional Requirements:
● Scalable Infrastructure: The application's infrastructure should be

capable of scaling horizontally to accommodate growth.

5.7 Privacy and Data Protection

Functional Requirements:
1. Data Encryption: User reviews, ratings, and personal data must be

encrypted during transmission and storage.
2. Data Access Control: Access to user reviews and ratings should be

restricted to authorized users.

12

3. User Consent: Users must provide consent for their reviews and ratings
to be visible to others.

Non-Functional Requirements:
● Compliance: The system must comply with data protection regulations

and guidelines to ensure the privacy and security of user data.

6. Use Case Diagram

13

Use case Explanation:

a. Actors:
1. Student: Represents individuals seeking tutoring services.
2. Tutor: Represents professionals providing tutoring services.
3. System Admin: Represents administrative users responsible for system

maintenance and oversight.

b. Use Cases:

1. Registration (UC1): Both Students and Tutors need to register themselves in the
TutorFIT system to access its features.

2. Sign-in (UC2): After registration, both Students and Tutors must sign-in to
access their respective dashboards and functionalities.

3. Update Profile (UC3): Both Students and Tutors can update their personal and
professional details in the TutorFIT system.

4. Receive Notifications (UC4): Both Students and Tutors can receive notifications
about various activities, such as session confirmations, reminders, or new
messages.

5. Schedule Session (UC5): Students can schedule tutoring sessions with
available Tutors.

6. In-App Messaging (UC6): Students can communicate with Tutors directly within
the application using the messaging feature.

7. Receive Tutoring Session Request (UC7): Tutors will receive requests from
Students who wish to schedule a tutoring session with them. They can then
accept or decline these requests.

8. Monitor Engagement (UC8): The System Admin has the ability to monitor user
engagement on the platform, including tracking activities like sign-ups and
tutoring sessions.

9. Collect Data (UC9): The System Admin can initiate and manage the process of
data collection related to user behavior within the app, providing insights into user
preferences and behavior.

10. Backup & Restore (UC10): The System Admin can back up the system data
and restore it if needed. This ensures data safety and system reliability.

14

c. System Boundary:
The diagram has a system boundary labeled "TutorFIT", which encapsulates all
the use cases mentioned. This represents the scope of the TutorFIT system and
ensures that the functionality being described is within the confines of this
system.

d. Relationships:
The arrows in the diagram represent the interactions between the actors and the
use cases. For example, both the Student and Tutor actors interact with the
"Registration" use case, indicating that both of them have the capability to
register themselves on the platform.

15

